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EDGE SETS CONTAINED IN CIRCUITS 

BY 

K. B. REID AND C. THOMASSEN 

ABSTRACT 

A graph G with n vertices has property p.(r, s) if G contains a path of length r 
and if every such path is contained in a circuit of length s. G. A. Dirac and C. 
Thomassen [Math. Ann.  203 (1973), 65-75] determined graphs with property 
p(r, r + 1). We determine the least number of edges in a graph G in order to 
insure that G has property p(r, s), we determine the least number of edges 
possible in a connected graph with property p(r, s) for r = 1 and all s, for r = k 
and s = k + 2  when k =2 ,3 ,4 ,  and we give bounds in other cases. Some 
resulting extremal graphs are determined. We also consider a generalization of 
property p(2, s) in which it is required that each pair of edges is contained in a 
circuit of length s. Some cases of this last property have been treated previously 
by U. S. R. Murty [in Proof Techniques in Graph Theory, ed. F. Harary, 
Academic Press, New York, 1969, pp. 111-118]. 

I. Introduction 

By a theorem of G. A. Dirac and C. Thomassen [5, theor. 1], if G is a 

connected graph which contains a path of length r and every such path in G is 

contained in a circuit of length r + 1, then G is either a complete graph, a circuit, 

or a complete bipartite graph. A result of G. Chartrand and H. V. Kronk [4] 

shows that this is also a characterization of graphs with n vertices such that every 

path of length n - 2 is contained in a circuit of length n (a Hamiltonian circuit), 

where the bipartite case occurs only if n is even and G is K,/2.~2. In this paper 

we place these theorems in the framework of a general family of problems and 

treat some extremal problems thus arising. Let us say that a graph G with n 

vertices has property p(r, s) (respectively, p(r, <-_ s)), 1 <= r < s <= n, if G contains 

a path of length r and if every such path is contained in a circuit of length s 

(respectively, less than or equal to s). Then the above-mentioned theorems 

determine graphs with property p(r, r + 1) and graphs with property p ( n  - 2, n). 

We can view property p(r, s )  as a generalized undirected version of a bypass as 

described for directed graphs in [3]. That is, if P is a path of length r from vertex 
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a to vertex b in a graph G with property p(r, s), then P is contained in a circuit 

C of length s. The path of length s - r from a to b which is contained in C, but 

distinct from P, can be thought of as a bypass of P from a to b. However, the 

translation of the definition of property p(r, s) to directed graphs results in: a 

directed graph D has property p(r, s), 1 <~ r < s <= n, if D contains a directed 

path of length r and if every such path is contained in a directed circuit of length 

s. B. Alspach proved (see [1]) that every regular tournament of order n has 

property p(1, sj, 3 =< s =< n, and there are almost regular tournaments of even 

order n without property p(1, s). The vertex version for strong tournaments, i.e., 

in every strong tournament of order n each vertex is contained in a directed 

circuit of length s, 3 =< s = n, is well known [8]. 

We also note a result by H. V. Kronk [7, theor. 2] concerning r-path 

Hamiltonian graphs, i.e., graphs with n vertices in which every path of length not 

exceeding r, 1 < r-< n -  2, is contained in a circuit of length n. Namely, if 

1 =< r =< n - 3 and if G is a graph on n vertices and at least (n - 1) 2 + r + 2 edges, 

then G is r-path Hamiltonian. This implies the second case in Corollary 2.4 

below. Graphs which are ( n - 2 ) - p a t h  Hamiltonian were called randomly 

Hamiltonian in [4] and are exactly those graphs with property p ( n -  2, n). 
In Sections 2-5 we are concerned with two extremal problems arising from 

property p(r,s). For integers 1 _-< r < s =< n, determine the smallest integer 

m~(n; r, s )= ml so that every graph with n vertices and ml edges has property 

p(r, s), and de terminethe  smallest integer m2(n; r, s) = m2 so that there exists a 

connected graph with n vertices and m2 edges which has property p(r, s). The 

value of rnL(n; r, s) is determined in Section 2, and some extremal graphs are 

described. The determination of m2(n; r, s) is more involved, but in Section 3 we 

determine m2(n ; 1, s) for all 2 _-< s =< n and describe the extremal graphs when 

n -= 1 (mod s - 1), and in Section 4 we determine m2(n ; 2, s) for s = 3, 4, describe 

the extremal graphs and determine m2(n ; 3, 5). Bounds in certain other cases and 

the value of m2(n;4,6) are obtained in Section 5. In Section 6 we study a 

generalization of property p(2, s). Special cases of this were studied by U. S. R. 

Murty and B. Bollobfis (see [9]). 

Familiarity with the basic notions of graph theory is assumed. Our terminol- 

ogy and notation is, in the most part, that of F. Harary [6]. Exceptions are that 

we use vertex and edge instead of point and line, and we often subscript 

graphical parameters with graphs in order to emphasize the graph in which the 

parameter is considered (e.g., de(x, y) denotes the distance between vertices x 

and y in graph G). 
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2. The function ml(n; r,s) 

DEFINITION 2.1. Let r and n be positive integers, r _-< n -  3. Denote by H, 

the graph obtained from K,+5 by deleting the edges of a circuit of length three. 

Denote by/am., the graph obtained from K,-t  by adjoining a new vertex x which 

is adjacent to any other r + 1 vertices of K,_.. 

REMARK 2.2. Any path in Hr of length r using only vertices of degree r + 4 is 

contained in no circuit of length r + 5. Any path in H,~, of length r using only 

vertices adjacent to x is contained in no circuit of length n. However, any other 

path of length r in either/4,  or H,~r is in a hamiltonian circuit. Note, also, that a 

path in H,,, of length r + 1 from x to a vertex adjacent to x which uses all 

vertices adjacent to x is contained in no circuit of length greater than r + 2. 

Clearly, H .. . .  3 has none of the properties p ( r , r + l )  ( 1 _ - < r - n - I ) ,  

p ( n -  2, n). Hence m l ( n ; r , r  + 1)= ml(n;  n -  2, n ) =  (2)" Combining this with 

our first theorem below we obtain the value of m~(n; r, s). 

THEOREM 2.3. Let r and n be integers, 1 <- r <= n - 3. I f  G is a graph with n 

vertices and at least ( n -  1) 2 + r + 1 edges, then G has property p(r, s) for every 

s = r + 2, r + 3, . . ., n - 1 .  If, furthermore, G ¢ H, and G ~ H,.r, then G has 

property p(r, n ). 

Note that Theorem 2.3, in particular, implies the well-known result that every 

G with n vertices and at least (n - 1) graph 2 + 2 edges has a hamiltonian circuit 

[10, theor. 4.3]. 

PROOF. The proof is by induction on n. The statement is trivial for n = 4, so 

we proceed to the induction step. Let G be a graph with n _-__ 5 vertices and at 

l e a s t (  n - 1  ) 2 + r + 1 edges. It is no loss of generality to assume that G is not 

complete. If we delete a vertex of G of degree at most n - 2, then the resulting 

graph has n - 1 vertices and at least ( ~ - ~ )  + 2 edges, and hence it has a circuit 

of length n - 2, by the induction hypothesis and the remark preceding the proof. 

In particular, G has a path of length r. Now let P be any path of length r, say 

from vertex v o t o v e r t e x  v,. If r = n - 3 ,  then G has ( 2 ) - 1  e d g e s a n d t h e  

theorem is true; so assume r _--- n - 4. If every vertex of G which is not on P has 
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degree  n - 1, then P is clearly conta ined in a circuit of any length grea ter  than 

r + 1. Let  u be a vertex of  min imum degree  a m o n g  the vertices of  G not on P. 

W e a s s u m e d ( u ) < = n - 2 .  T h e n a - u h a s n - l v e r t i c e s a n d a t l e a s t ( n 2 2 ) +  

r +  l + ( n - 2 - d ( u ) )  edges. By the induction hypothesis  P is conta ined  in 

circuits (in G -  u)  of lengths r + 2, r + 3 , . . . ,  n - 2. 

We shall now show that P is conta ined in a circuit of length n - 1 in G. By the 

induct ion hypothesis  this is the case provided G - u ~ Hr and G - u ~ H,_,., .  So 

assume G - u = H r  or  G - u = H . _ I , , .  In part icular  [ E ( G - u ) [ =  

2 + r + 1, which implies that u has degree n - 2 in G. By the minimality 

p roper ty  of u, every vertex of G - u not on P has degree  at least n - 3 in G - u. 

Cons ider  first the case G - u = H~ n - 1 = r + 5. Every  vertex of Hr has degree  

r + 4 = n - 2  or  r + 2 = n - 4 ,  so every vertex of G - u  not on P has degree  

n - 2 in G - u. This clearly implies that P is conta ined in a circuit of length 

n - 1. Cons ider  next the case G - u = H,-1.,. Every  vertex of H , - L r  has degree  

n -  2, n - 3 or  r + 1. If the vertex of degree  r + 1 is conta ined  in P, then P is 

clearly conta ined in a circuit of length n -  1, so assume the opposi te .  Then 

r + l _ - > n - 3 .  I f r + l = n - 2 ,  then G - u  is complete ,  so assume r + l = n - 3 .  

F rom this it follows that G is obta ined  from the comple te  graph with n vertices 

by deleting two edges, and P is a path in G of length n - 4. It is now easy to see 

that P is conta ined in a circuit of length n -  1. 

We shall finally show that P is conta ined in a circuit of length n under  the 

assumption that G ~  H, and G ~  HR.,. We have already shown that P is in a 

circuit C of length n -  I. Let O be the path of length n -  r -  1 f rom v0 to v,, 

conta ined in C, but distinct f rom P. D e n o t e  O by xox~. . ,  x . . . .  2x . . . .  1, where  

x~= v~ and x~_,_~ = v,, and let u be the vertex of  G not  on C. Suppose  u is 

adjacent  to k of  the vertices { x ~ , x ~ , . . . , x  . . . .  2}. Since G / H ~ . , ,  we see that 

d c ( u ) _ - > r + 2 ,  and thus k = > l .  

First, we show that we may restrict our  at tent ion to the cases k = 1 and k = 2. 

Suppose  u is adjacent  to x~ and x, 1 - < _ i < ] _ - < n - r - 2 .  If j = i + l ,  then 

rep lacement  in C of xix~.~ by xiux~.~ yields the theorem.  So assume i +  1 </ ' .  If 

x, ,x, j is in E ( G )  (x~.,xj+, is in E ( G ) )  rep lacement  of x~_lx, and xj-,Xl 

(respectively, x,x~÷~ and xjxj+~) in C by x,_jxj t and xiuxj (respectively, x~÷~x~.t and 

x,ux~) yields the theorem.  So if u is adjacent  to x~, ,x~, . . . ,x~ (all on C), 

1 < i~ < i2 .< • • • < ik - n - r - 2, then we may assume without  loss 9f general i ty 

that {x,,_~,x~_~,..., x~,_~} and {x~.~, x,~+~,..., x~,.~} are two independent  sets of 

vertices in G with at most  k - 1  c o m m o n  vertices. This accounts  for at least 
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2(k - 1 ) *  (k  2- 1 ) e d g e s  in G. Since u is nonad j acen t  to n -  r - 2 -  k vert ices of 

{x,, ., x.°_,_2}, 

= 2 + n - r - 2 - k .  

But [ E ( G ) l  <= n - r - 2, so that O >= ( ~ ) -  l, or k =< 2. So we now treat the cases 

k = l  and k = 2 .  

If k = 2, the right side of (1) is n - r - 2. This  means  that  all edges  of (~ have  

been  de t e rmined  in the count  leading to (1). We  deduce  that  u is ad jacent  to 

each of the vert ices v0, v,, • - . ,  v, and that  x, is ad jacent  to xi2+,. R e p l a c e m e n t  in C 

of XoX~ and xi2x~2+, by x~.÷~x~ and x~2uxo yields the theo rem.  

If k = l ,  then r + 2 = < d ~ ( u ) < = ( n - 1 ) - ( n - r - 3 ) = r + 2 .  Hence ,  

I E ( ( 3 -  u)l  = I E ( ( 3 ) l -  d o ( u ) < = ( n -  r - 2 ) - ( n -  1 -  d e ( u ) )  = 1. Moreove r ,  u 

is ad jacent  to every ver tex  of P. D e n o t e  it by i. If i = 1 or  i = n - r -  2, then 

r ep l acemen t  yields the theo rem.  So we assume 2 =  < i =< n - r - 3 .  Since 

I E ( G -  u)l_-< 1, not bo th  x~x,+L and x,_,x, , 2 are in E ( ( ~ )  unless these two 

edges are actually the same  edge,  i.e., unless i = 2 and i + 1 = n - r - 2. In this 

case n = r + 5 and thus, G = Hr, a contradic t ion.  If x~x,+~ is in E ( G )  (x,_,x, ,-2 is 

in E(G)) ,  then r ep l acemen t  in C of XoX~ and x,x,÷, (respect ively,  x~_,x, and 

x . . . .  2x . . . .  ~) by x,x~+, and xoux~ (respect ively,  x,_~x,_,_2 and x,ux,-r-O yields a 

circuit of length n containing P. 

In any case, P is con ta ined  in a circuit of  length n so that  the p roof  of  the 

t h e o r e m  is comple te .  

We  point  out that  the case r = 1 of the prev ious  t h e o r e m  was p roved  using 

different me thods  by B. Alspach  and T. Brown [2] and recall that  the case s = n 

was part ial ly t rea ted  by H. V. K r o n k  [7]. 

COROLLARY 2.4. Let r and 

Then m~(n ; r , s )=  [ 

(.;1) 

n - 1 

n be integers, 1 <= r <- n - 2. 

+ r + l ,  if r + 2 < = s = < n - 1  

+ r + 2 ,  if s = n > - r + 3 .  

3. The function m d n ;  1, s)  

DEFINITION 3.1. Let  n and s be  integers,  2 < s =< n. Let  n = (s - 1)i + r, 

1 =< r =< s - 1. We  deno te  by Fn.~ the  mul t igraph  ob ta ined  f rom a star  with i + 1 
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edges by replacing i edges by a circuit of length s and one edge by a circuit of 

length r (here a circuit of length 1 is understood to have one vertex and no 

edges), cf. Figure 1. 

<><> 

F8, 3 F7,4 

Fig. 1. 

The multigraph F,,s is a graph, unless s = 2 or r = 2. Note that F,,, has 

property p(1, <-<_ s). F,,s has n vertices and the number of edges is 

si , if r = 1 
f ( n , s ) =  si + r, if r # l .  

We study the function f (n,  s) in the next lemma. 

LEMMA 3.2. Let k, s, and n be integers 2 <= k <- s <- n. Write n = (s - 1 ) i  + r, 

l<-<_r<-<_s-1. Then 

J~ J -~tn-k+l,s~=~f(n's)-k+l' if 2 < = k < = r - 1  i) 
[ f ( n , s ) - k ,  , if r<-k  <=s 

ii) f (n,  s) <= f(n,  s - 1) with equality if and only if 

l < r  and r + i < = s - 1 .  

PROOF. Part (i) follows from the observation that for 2 =< s =< m, 

2, if m = - I  ( m o d s - 1 )  
f ( m + l , s ) - f ( m , s ) =  1, if m ~ l  ( m o d s - 1 ) .  

The proof of part (ii) is straightforward and is omitted. 

THEOREM 3.3. Let s and n be integers, 2 <- s <= n, and let G be a connected 

multigraph with n vertices. I f  G has property p(1, <- s), then [ E ( G ) [  _-> f (n,  s). 

Moreover, if [ E ( G ) [ = f ( n , s )  and n - 1  ( m o d s - 1 )  as well, then G is a 

connected graph each block of which is a circuit of length s. 

PROOF. The proof is by induction on n and s. Let G be a connected 

multigraph with n vertices which has property p(1, _-< s). For 2 = s =< n, since G 
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is connected I E(G)l  2(n - 1) = f (n,  2). If [E(G)[ = f (n,  2), then it is easily 

seen that multigraph G is obtained from a tree by replacing each edge by a 

circuit of length 2. Also, for 2_- < s = n, I E ( G ) [ -  > n =f(n,  n), since G is 

connected and must contain at least one circuit. If 2 =< s = n and [ E ( G ) I  = n, 

then G is exactly a circuit. Let 3 = s < n. Assume that for each n ' <  n the 

theorem holds for all s', 2 =< s' < n'. Also assume that the theorem holds for all 

s', 2 <= s' < s < n. 

If G contains no circuit of length s, then G has property p(1, _-< (s - 1)). By the 

induction hypothesis and part (ii) of the lemma, [ E ( G ) [  _-> f (n,  s - 1) _-> f (n,  s). If 

I E ( G ) I  = f(n,  s), then f (n,  s - 1) = f (n,  s), and hence, by part (ii) of the lemma, 

n ~ 1 (rood s - 1). 

So, we may assume that G contains a circuit C of length s < n. Contract all 

edges of G which have both ends on C to a single vertex x, yielding a new 

multigraph H with [ V(H)[  = n -  s + 1 and [ E ( H ) [ _ - < [ E ( G ) [ -  s. H has prop- 

erty p(1, =< s), so by our induction hypothesis, [ E ( H ) [ _ -  > f ( n  - s + 1, s). By part 

(i) of the Lemma 

(3) [ E(G)I-_  > I E ( H )  I + s >- f (n  - s + 1, s )  + s = f ( n ,  s ) .  

If [ E ( G ) [  = f (n,  s) and n -= 1 (mod s - 1), then from (3) we see that [ E ( H ) [  = 

f ( n  - s + 1, s), [ V(H)[  - 1 (rood s - 1), and that C has no diagonals, i.e., the 

only edges of G with both ends on C are exactly the edges of 6". Clearly H is 

connected. By our induction hypothesis, each block of H is a circuit of length s. 

Consider a circuit C'  of H containing x. In G the edges of C'  induce either a 

circuit or a path connecting two distinct vertices of C. Let e be any edge of C'. G 

contains a circuit C" including the edge e and of length at most s. Knowing the 

structure of H, we easily deduce that C" contains all edges of C'. Hence, since C'  

has length s, C" = C', i.e., C '  and C have precisely one vertex in common. From 

this it follows that G is a connected graph each block of which is a circuit of 

length s. 

By induction the theorem follows. 

COROLLARY 3.4. 

1 <  r <= s - - 1 ,  then 

PROOF. 

Let s and n be integers, 2<-_s<=n. I f  n = ( s - 1 ) i + r ,  

si , if  r = l  
m~(n;1, s ) = f ( n , s ) =  s i+r ,  if r ~ l .  

The inequality m2(n; 1, s) >= f(n,  s) follows from the previous 

theorem. To show the reverse inequality take Ft~-l)~+,.s, select two vertices which 
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are connected by a path of length s - r ,  and add (if r > 1) a path of length r 

between these vertices. 

The proof of the Corollary shows that the extremal graphs may contain blocks 

which are not circuits in the cases n ~ 1 mod (s - 1). Also, there exist extremal 

graphs containing no two edge-disjoint circuits. For example, consider the graph 

of Figure 2a. 

Of course, there are edge-minimal connected graphs which have property 

p(1, s) and which are not edge-minimum. Consider for example the graph of 

Figure 2b. 

(a) 

Fig. 2. 

(b) 

4. The function m~(n; 2, 4) 

Now we turn to the property p(2, < 4). It is easy to see that a connected graph 

G with n vertices, n _-> 3, has property p(2, 3) if and only if G = K,. However,  

there seems to be no simple characterization of graphs with property p(2,4)  

(respectively, p(2, =<4)). It can be shown that the only cubic graphs with 

p(2, _-< 4) are K4, K3.3, the 3-cube and the triangular based prism (the cartesian 

product of K3 and K2). Regular graphs with property p(2, =< 4) include K,+~, K,~., 

K,÷2-(edges in a perfect matching) (if n is even), and the cartesian product of K, 

and K2. 

A lower bound on the number of edges in graphs with property p(2, =< 4) is 

obtained in the next theorem. 

THEOREM 4.1. If  G is a connected graph with n vertices, n >= 4, which has 

property p(2, _- 4), then I E ( G ) I  >= 2n - 4. 
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PROOF. Let G be a connected graph with n vertices, n_->4, which has 

property p(2, =< 4). Let H be a subgraph of G such that 

i) I E ( H ) I _ - > 2 1 V ( H ) [ - 4 ,  
ii) for each x E V(H), d,(x)=>2,  and 

iii) [ V(H) I is maximum. 
Such an H exists since G contains a circuit of length 4. If [ V(H)  I = n, then 

I E ( a ) l _ -  > IE(H)I=> 2n - 4 .  Suppose I V(H)l < n. Let H '  be the subgraph of G 
spanned by the vertices in V ( G ) -  V(H) which are adjacent to some vertex of 

H. V ( H ' ) ~  O since G is connected and [V(H)I< n. If v E V(H') and 

v E N(x) N N ( y )  with x #  y in V(H), then H + v (the subgraph of G composed 

of H and v and all edges of G with one end in V(H) and one end v) satisfies (i) 

and (ii), a contradiction to (iii). So if v is in V(H') there is exactly one x in V(H) 
with v adjacent to x. By (ii), let x~ and x2 be in N , (x ) .  Path xtxv is in a circuit C1 

of length 4, so from our previous remark, there is a vl in V(H') so that C~ is 

given by xzxvv~x,. Similarly, x2xv is in a circuit Cz of length 4 given by x2xvv2x2 
with vz~ V(H'). Also v~ ~ v2, since x~ ~ x2. Thus, dH,(v)_-> 2, for every v in 

V(H'), and [E(H')I-->1 V(H')I. Let H"  be the subgraph of G spanned by 

vertices in V(H) U V(H'). Then I E(H")I>= I E ( H )  I÷ I E ( H ' ) I + I  V(H')I >- 
21 V ( H ) [ - 4 +  21 V(H') [  = 2[ V ( H " ) [ - 4 ,  i.e., (i) is satisfied by H". Since 

d,.(x)_->2 for every x in V(H"), we have contradicted the choice of H. 

Consequently, [ V(H)  I = n and the theorem follows. 

In order to show that the bound given in the previous theorem is best possible, 

we merely need to consider K2:n-2. So, we have determined m2(n; 2, 4). 

COROLLARY 4.2. m2(n; 2, 4) = 2n - 4 for n >= 4. 

COROLLARY 4.3. The only edge-minimum cubic graph with property 
p(2, < 4) is the 3-cube. 

For each n _-> 6, we can find a non-complete bipartite edge-minimum graph 

with n vertices with property p(2, =< 4) (the case n = 8 is given in Corollary 4.3). 

In fact, we now describe all the edge-minimum graphs with property p(2, =< 4). 

DEFINITION 4.4. Let B be the collection of graphs defined as follows: 

i) K2.2 is in B. 

ii) If G is in B and x and y are two distinct nonadjacent vertices of G such 

that N(x) = N(y) ,  and z is a new vertex (i.e., not in V(G)), then the graph H 

with V ( H ) =  V(G)U{z} and E ( H ) =  E(G)U{xz, yz} is also in B. 

It is easy to prove by induction on the number of vertices that every graph in B 

has property p(2, 4). 
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All edge-minimum connected graphs with property p(2, =< 4) are given in the 
next theorem. 

THEOREM 4.5. Let G be a connected graph with n vertices, n >= 4, which has 

property p(2, =< 4). I f  [ E (G) [  = < 2n - 4, then G has property p(2, 4), and G is the 
3-cube or G is in B. 

We omit the proof of this theorem, as it is too long to be included here. It is 

conducted by induction on n, and depends strongly on the ideas in the proof of 

Theorem 4.1. 

We mention another generalization of Theorem 4.1. 

THEOREM 4.6. Let k be an integer, k >= 4; k / 6. I f  G is a connected graph with 
n vertices, n >= k, which has property p(k  - 2 ,  <- k), then IE(G)[>=2n - k. 

We also omit the proof of this theorem. Note that the theorem is best possible 

for k = 5 (as demonstrated by the graph obtained from K2.,-3 by inserting a new 

vertex of degree 2 on one of its edges). Thus, mffn ; 3, 5) = 2n - 5. It can easily be 

shown, using the method of Theorem 4.1, that every connected graph with n 

vertices which has property p(4, < 6) has at least (3/2)n - 3  edges. In the next 

section we show this is best possible, when n is even. 

5. Bounds for mdn; r, s) 

Edge-minimum graphs with property p(2, s), s > 4, are apparently difficult to 

determine, particularly when s is odd. In this section we present some 

constructions which yield upper bounds on the number of edges in edge- 

minimum graphs with property p(r, s), i.e., on m2(n; r, s). Values of mffn; 1, s), 

mffn;2 ,  4) and mffn, 3, 5), are given in previous sections. 

Consider the graphs indicated in Figure 3. 

It follows from Figure 3 that 

a) mffn;2,  s)<=(3/2)n when n and s are even integers _->6. 

b) mffn; r, s) <= (s/(s - 2))(n - 2) for n = ((s - 2)/s)i + 2, i >= 2, 2 <- r <= (s/2) + 

1, and s_-> 6, s even. 

c) mff2s;2, s) <= m2(2s; 3, s)<=3s for s odd, s_->5. 

d) rn2(s2-s;2,  s)<=s2+s for s odd, s_->7. 

Note that (c) shows that the inequality of (a) also holds, when s is odd, and 

n = 2s. Also note that the inequality of (b) reduces to that of (d), if we put r = 2 

and n = s 2 -  s. 

Combining the last paragraph of Section 4 with (b), we see that m2(n;4, 6) = 

(3 /2 )n -  3, for n even. 
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6. A generalization of property p(2, s) 

DEFINITION 6.1. A graph G has property q(2, s) (respectively, q(2, < s)) if 
each pair of edges is contained in a circuit of length s (respectively, less than or 
equal to s). Let tz(n, s) (respectively,/z(n, _-< s)) denote the smallest integer such 
that there exists a connected graph with n vertices and tz(n, s) (respectively, 
/z(n, <_-s)) edges which has property q(2, s) (respectively, q(2, _-< s))./z(n, s) is 

denoted /xE(n, s) in [9]. 
Clearly,/% (n, _-< s) _-</% (n, s) and m2(n; 2, s) < I% (n, s). It is easy to see that the 

3-cube does not have property q(2, 4) and that the graphs K2,n-2 are the only 
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graphs in B (see Definit ion 4.4) which have p roper ty  q(2, 4). So by T h e o r e m  4.5, 

we obtain the following result of U. S. R. Mur ty  [9, theor.  1~]: 

THEOREM 6.2. /z(n, 4) = 2 n - - 4 ,  and K2,.-2 is the corresponding extremal 

graph. 

Murty  also proved  [9, theor.  2 E] that /z(n, 6 ) =  [ ( 3 n -  5)/2]. The  graphs in 

Section 5 demonst ra t ing  the inequali ty m2(n ; 2, 2s)  =< (s/(s - 1)) (n - 2) when 

n -- 2 mod (s - 1) also show/z  (n, _-< 2s) =</z (n, 2s)  -<_ (s/(s - 1)) (n - 2) for  these 

values of n. We shall show that  (n, _<- 2s) = {(s/(s - 1))(n - 2)} for  all n _-> 2s. For  

this we need the following lemma.  

LEMMA 6.3. Let H be a graph with radius r ( H ) =  r, and let P be a path of 

length s such that P and H have exactly the endoertices, v and w say, of P in 

common. Then 

a) r (H  U e)>=½(s + d, (v ,  w ) -  l), and 

b) r (H  t.) P) >= min{r, s}. 

PROOF OF (a). Let  H '  deno te  the graph H U P and let P '  be  a shortest  path 

of H connect ing v and w. P '  has length d = du(v, w). Consider  first any ver tex u 

on P but  not in H. It is easy to see that the circuit P U P '  has radius [½(s + d)], so 

there  is a ver tex u' in P U P '  such that dpup, (u ,u ' )>=½(s+d-1) .  But  

dpup,(u, u ' )  = du,(u, u'), so eu,(u)>-½(s + d - 1) (e, ,(u) denotes  the eccentrici ty 

of u in H ' ) .  Consider  next  a ver tex u in H. Put  a = du(u, v) and /3  = du(u, w) 

and assume, wi thout  loss of generali ty,  that a =</3. Suppose  first a + s _->/3. In 

this case let u '  be the ver tex of P whose distance in P f rom w is t = 

[½(a + s - / 3 ) ] .  This  ver tex exists since a _-</3 implies t _-< s. Then  dw(u, u ' )  = 

m i n { a + s - t , / 3 + t } .  By choice of t, a + s - t > - f l + t = [ ½ ( a + f l + s ) ] > =  

½ ( d + s - 1 ) .  So e u , ( u ) > - ½ ( d + s - 1 ) .  Suppose  next  a + s < f l .  If t ~ + s _ -  > 

½ ( d + s - 1 ) ,  then eu, (u)>=du,(u ,w)>=½(d+s-1) ,  so assume a + s <  

½(d + s - 1). Let  u '  deno te  the ver tex on P '  whose distance in P ' ,  i.e., in H, f rom 

w is t = [ ½ ( d - s - 2 o e ) ] .  Then  d , ( u , u ' ) > = d u ( u ' , v ) - d , ( u , v ) = d - t - o e > =  

½(d + s - 1). 

So e. . (u)  >= d.,(u, u') = min{d . (u ,  u'), a + s + t} => ½(d + s - 1). In each case 

eu,(u)>=½(d + s - 1), so r(H')>=½(d + s - 1), and (a) is proved. 

PROOF OF (b). We shall prove  that  for  every vertex u in H', e~,(u)>-_ r or  

e~,(u) >= s. Consider  first a ver tex u E V ( H ) .  There  exists a u '  in V ( H )  such that  

d~(u, u') = e . ( u )  >- r. Ei ther  d..(u, u') = d . (u ,  u') >- r or  else a shortest  path in 

H '  f rom u to u '  includes P, in which case d.,(u, u')>= s. So e.,(u)>= min{r,s}. 

Cons ider  next  a ver tex u on P but  not  in H. Ver tex  u part i t ions P into a v - u 
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path of length t, say, and a u - w path of length s - t. Let u'  be the vertex on P '  

whose distance (in P ')  from v is rain{t, d, (v ,  w)}. Let z E V ( H )  be a vertex such 

that do(z, u ' ) =  eo(u') >_- r. Then do(z, v) >- _ dn(z, u') - do(u' ,  v ) >= r - t, and 

d o ( z , w ) > { r - ( d o ( v , w ) - t ) ,  if t < d o ( v , w )  
= r , if t~'=do(v,w).  

Hence, 

eo,(u)>= dH,(u, z) = min{t + do(z, v), s - t + do(z, w)} 

~min{r, r + s - do(v, w)}, if t < do(v, w) 
>--[ m i n { r , s - t + r }  , if t > = d , ( v , w ) .  

If do(v, w) <= s, we have proved that e,,(u) >= r, so assume do(v, w) - s + 1. Then 

eo,(u)>= epue,(u) = [½(s + do(v, w))] => [½(2s + 1)] = s. In either case eo,(u)>= 

min{r, s} and (b) is proved. 

REMARK 6.4. The graph consisting of m paths, each of length k, and one 

path of length r + 1, 1 =< r _-< k - 1, such that each pair of paths have exactly the 

endvertices in common has 2 + (k - 1)m + r vertices, km + r + 1 edges, and it 

has property q(2, =< 2k). 

THEOREM 6.5. Let G be a connected graph with IV(G)[= n = 

2 + ( k - 1 ) m + r ,  where l<=r<=k-1 .  I f  G has property q(2,=<2k),  then 

[E(G)I>-_ km + r+ 1. 

PROOF. A non-empty, connected subgraph H of G spanned by 2+  

(k - 1)m' + r' vertices (1 _-< r' _-< k - 1) of G is called admissible if 

i) I E ( H ) l > - k m ' + r ' + l ,  and 

ii) I E ( H ) l > k m ' + r ' +  l, if r (H)<-r  '. 
It is easy to see that every subgraph spanned by the vertices of a circuit of length 

not exceeding 2k is admissible. Let H be a maximal admissible subgraph. We 

shall show that H = G. Suppose, therefore, that H E  G. 

We shall first consider the case where G contains a path P of length not 

exceeding k such that P and H have precisely the endvertices, v and w say, of P 

in common. Let s denote the length of P and let H '  be the subgraph of 

G spanned by V ( H )  U V(P).  Then I V(H')I  = I V ( H )  I+ s - 1 = 
2 + ( k - 1 ) m ' + r ' + s - 1 ,  and lE(H')t>=lE(n)l+s>=km'+r'+s+l. If 

r' + s - 1 _<- k - 1, then H '  is an admissible subgraph, contradicting the maximal- 

ity property of H. So we may assume r ' +  s > k. Then we write l V ( H ' ) l  = 
2 + ( k - l )  ( m ' + l ) + r ' + s - k  a n d l E ( H ' ) l > = k ( m ' + l ) + r ' + s - k + l .  If the 
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last inequality is strict, then H '  is admissible, so assume it is not strict. Hence,  the 

inequality I~(H' ) I - ->  I (H) I+ s is an equality, and this implies I E ( H ) ]  -- 

km'+ r ' +  1. Since H is admissible, r(H) > r ' +  1. By Lemma  6.3(b), r(H')~ 
m i n { r ' +  1, s}. Since r '  ~ k - 1 and s ~ k, it follows that r(H') ~= min{r '  + 1, s} 

r '  + s - k ÷ 1. Hence H '  is admissible, a contradiction. 

We next consider the case where no such path P exists. Let e be an edge of G 

incident with vertices x in V(H) and y in V ( G ) -  V(H). Let z be a vertex of 

maximum distance (in H )  from x. Let e '  denote  any edge of H incident with z. 

Let  C be a shortest circuit in G containing e and e' .  Since G has proper ty  

q(2, ~ 2k),  C has length not exceeding 2k. There  is a unique decomposit ion of C 

into paths, p~,p2,...,pq, pq+~,...,pq, such that each of PJ (1_-<i_- < q )  has 

exactly its endvertices in common with H, each of PJ (q ÷ 1 _-< j ~ q ')  is contained 

in H, and P '  N PJ = O for q < i < j  _-< q' .  By assumption, each of the paths P~ 

(1 _-< i =< q) has length greater  than k. But this implies that q -- 1 and q '  -- 2. Let v 

denote  the endvertex of P~ other  than x, and let s denote  the length of p l  

(k + 1 _-< s < 2k). Let H '  denote  the subgraph of G spanned by V(H) U V(PI). 
Zhen ] V ( n ' ) l = 2 + ( k - 1  ) ( m ' + l ) + r ' + s - k ,  and IE(H')I>=IE(H)I+~>= 
k ( m ' + l ) + r ' + s - k + l .  Suppose first that I E ( H ) l = k m ' + r ' + l .  Then 

r(H) ~= r' + 1, which implies that p2 has length at least r '  + 1, because it contains 

an x - z  path. Then s, the length of pz, is at most 2 k -  r ' - 1 ,  which implies 

r '  + s - k ~ k - 1. To show that H '  is admissible, and thus obtain a contradic- 

tion, we need only show that r(H') -~ r '  + s - k + 1. The x - z path contained in 

P :  has length at least r' + 1. Hence,  the z - v path contained in P:  has length at 

most 2 k - s - r '  - 1, which implies dH (v, x ) ---> du (x, z ) - d ,  (z, v ) => 

( r ' + l ) - ( 2 k - s - r ' - l ) = 2 r ' + s - 2 k + 2 .  By L e m m a  6.3(a), r(H')>= 
½(s + ( 2 r ' +  s - 2k + 2) - 1) = r '  + s - k + 1 - ½. So H '  is admissible, a contradic- 

tion. Suppose next that I E(H) I > km' + r '  + 1. If r '  + s - k _-< k - 1, then we see 

from the inequality I E(H')I>= I E(H)[+ s > k(m'+ 1)+ r ' +  s -  k + 1 that H ' i s  

admissible. So we may assume that r '  + s - k _-> k. Then we write I V(H')I = 
2 + ( k - l )  ( m ' + 2 ) + r ' + s - 2 k  +l  and IE(H')l>-_k(m'+2)+r'+s-2k +2. 
Furthermore ,  by L e m m a  6.3(a), r(H')>½(s + dH(x, v ) -  1)=>½s > 

r '  + s - 2k + 1, because r '  =< k - 1 and s < 2k. This shows that H '  is admissible, a 

contradiction which proves the theorem.  
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