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EDGE SETS CONTAINED IN CIRCUITS

BY
K. B. REID AND C. THOMASSEN

ABSTRACT

A graph G with n vertices has property p(r, s) if G contains a path of length r
and if every such path is contained in a circuit of length s. G. A. Dirac and C.
Thomassen [Math. Ann. 203 (1973), 65-75] determined graphs with property
p(r,r+1). We determine the least number of edges in a graph G in order to
insure that G has property p(r, s), we determine the least number of edges
possible in a connected graph with property p(r,s) for r =1 and all s, for r = k
and s =k +2 when k =2,3,4, and we give bounds in other cases. Some
resulting extremal graphs are determined. We also consider a generalization of
property p(2, s) in which it is required that each pair of edges is contained in a
circuit of length s. Some cases of this last property have been treated previously
by U. S. R. Murty [in Proof Techniques in Graph Theory, ed. F. Harary,
Academic Press, New York, 1969, pp. 111-118].

1. Introduction

By a theorem of G. A. Dirac and C. Thomassen [5, theor. 1], if G is a
connected graph which contains a path of length r and every such path in G is
contained in a circuit of length r + 1, then G is either a complete graph, a circuit,
or a complete bipartite graph. A result of G. Chartrand and H. V. Kronk [4]
shows that this is also a characterization of graphs with n vertices such that every
path of length n — 2 is contained in a circuit of length n (a Hamiltonian circuit),
where the bipartite case occurs only if n is even and G is K. .. In this paper
we place these theorems in the framework of a general family of problems and
treat some extremal problems thus arising. Let us say that a graph G with n
vertices has property p(r, s) (respectively, p(r, =5)), 1 =r <s = n, if G contains
a path of length r and if every such path is contained in a circuit of length s
(respectively, less than or equal to s). Then the above-mentioned theorems
determine graphs with property p(r, r + 1) and graphs with property p(n — 2, n).

We can view property p(r, s) as a generalized undirected version of a bypass as
described for directed graphs in [3]. That is, if P is a path of length r from vertex
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a to vertex b in a graph G with property p(r, s), then P is contained in a circuit
C of length s. The path of length s — r from a to b which is contained in C, but
distinct from P, can be thought of as a bypass of P from a to b. However, the
translation of the definition of property p(r, s) to directed graphs results in: a
directed graph D has property p(r,s), 1=r<s=n, if D contains a directed
path of length r and if every such path is contained in a directed circuit of length
s. B. Alspach proved (see [1]) that every regular tournament of order n has
property p(1,s), 3=s =n, and there are almost regular tournaments of even
order n without property p(1, s). The vertex version for strong tournaments, i.e.,
in every strong tournament of order n each vertex is contained in a directed
circuit of length s, 3= s = n, is well known [8].

We also note a result by H. V. Kronk [7, theor. 2] concerning r-path
Hamiltonian graphs, i.e., graphs with n vertices in which every path of length not
exceeding r, 1=r=<n—2, is contained in a circuit of length n. Namely, if
n—1

2
then G is r-path Hamiltonian. This implies the second case in Corollary 2.4
below. Graphs which are (n —2)-path Hamiltonian were called randomly
Hamiltonian in [4] and are exactly those graphs with property p(n -2, n).

In Sections 2-5 we are concerned with two extremal problems arising from
property p(r,s). For integers 1=r<s <n, determine the smallest integer
mi(n; r,s) = m, so that every graph with n vertices and m, edges has property
p(r,s), and determine the smallest integer m(n; r, s) = m, so that there exists a
connected graph with n vertices and m, edges which has property p(r, s). The
value of m,(n;r, s) is determined in Section 2, and some extremal graphs are
described. The determination of m.(n;r, s} is more involved, but in Section 3 we
determine m,(n;1,s) for all 2= s = n and describe the extremal graphs when
n =1 (mods — 1), and in Section 4 we determine m,(n;2, s) for s = 3, 4, describe
the extremal graphs and determine m,(n; 3, 5). Bounds in certain other cases and
the value of mi(n;4,6) are obtained in Section 5. In Section 6 we study a
generalization of property p(2, s). Special cases of this were studied by U. S. R.
Murty and B. Bollobas (see [9]).

Familiarity with the basic notions of graph theory is assumed. Our terminol-
ogy and notation is, in the most part, that of F. Harary [6]. Exceptions are that
we use vertex and edge instead of point and line, and we often subscript
graphical parameters with graphs in order to emphasize the graph in which the
parameter is considered (e.g., ds(x, y) denotes the distance between vertices x
and y in graph G).

1=r=n-3andif G is a graph on n vertices and at least ( ) + r + 2 edges,
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2. The function m,(n;r,s)

DEeFiNITION 2.1. Let r and n be positive integers, r = n — 3. Denote by H,
the graph obtained from K,.s by deleting the edges of a circuit of length three.
Denote by H,, the graph obtained from K., by adjoining a new vertex x which
is adjacent to any other r + 1 vertices of K,_,.

REMARK 2.2. Any path in H, of length r using only vertices of degree r + 4 is
contained in no circuit of length r +5. Any path in H,, of length r using only
vertices adjacent to x is contained in no circuit of length n. However, any other
path of length r in either H, or H,, is in a hamiltonian circuit. Note, also, that a
path in H,, of length r+1 from x to a vertex adjacent to x which uses all
vertices adjacent to x is contained in no circuit of length greater than r +2.

Clearly, H,._; has none of the properties p(r,r+1) (I1=sr=n-1),

p(n—2,n). Hence m(n;r,r+1)=m(n;n—-2,n)= (;) Combining this with

our first theorem below we obtain the value of m,(n;r, s).

THEOREM 2.3. Let r and n be integers, 1 =r=n—3. If G is a graph with n

2
s=r+2,r+3,---,n—=1. If, furthermore, G# H, and G# H,,, then G has

property p(r, n).

vertices and at least (n )+ r+1 edges, then G has property p(r,s) for every

Note that Theorem 2.3, in particular, implies the well-known result that every
n-1

) ) + 2 edges has a hamiltonian circuit

graph G with n vertices and at least (
(10, theor. 4.3].

Proor. The proof is by induction on n. The statément is trivial for n = 4, so
we proceed to the induction step. Let G be a graph with n = 5 vertices and at

least (n ; 1) +r+1 edges. It is no loss of generality to assume that G is not

complete. If we delete a vertex of G of degree at most n — 2, then the resulting
graph has n — 1 vertices and at least (12:2) + 2 edges, and hence it has a circuit
of length n — 2, by the induction hypothesis and the remark preceding the proof.

In particular, G has a path of length r. Now let P be any path of length r, say
from vertex v, to vertex v, If r =n—3, then G has (;)—1 edges and the

theorem is true; so assume r < n — 4, If every vertex of G which is not on P has
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degree n — 1, then P is clearly contained in a circuit of any length greater than
r+ 1. Let u be a vertex of minimum degree among the vertices of G not on P.

We assume d(u)=n—2. Then G — u has n — 1 vertices and at least (" ; 2) +

r+1+(n—-2-d(u)) edges. By the induction hypothesis P is contained in
circuits (in G — u) of lengths r+2,r +3,--- n—2.

We shall now show that P is contained in a circuit of length n — 1 in G. By the
induction hypothesis this is the case provided G —u# H, and G —u# H,._,,. So
assume G-u=H or G-u=H,,. In particular |E(G-u)|=

(n ; 2) + r + 1, which implies that u has degree n — 2 in G. By the minimality

property of u, every vertex of G — u not on P has degree atleast n —3in G — u.
Consider first the case G —u = H, n — 1 =r +5. Every vertex of H, has degree
rt4d=n-2or r+2=n-4, so every vertex of G —u not on P has degree
n—2 in G —u. This clearly implies that P is contained in a circuit of length
n — 1. Consider next the case G —u = H,_,,. Every vertex of H,_,, has degree
n—2, n—=3or r+1. If the vertex of degree r + 1 is contained in P, then P is
clearly contained in a circuit of length n—1, so assume the opposite. Then
r+12n-3.If r+1=n-2, then G — u is complete, so assume r+1=n - 3.
From this it follows that G is obtained from the complete graph with n vertices
by deleting two edges, and P is a path in G of length n — 4. It is now easy to see
that P is contained in a circuit of length n — 1.

We shall finally show that P is contained in a circuit of length n under the
assumption that G# H, and G# H,,. We have already shown that P is in a
circuit C of length n—1. Let Q be the path of length n —r -1 from v, to v,
contained in C, but distinct from P. Denote Q by Xxox; """ X r2X,_,-1, where
Xo=v and x,_,., = v, and let u be the vertex of G not on C. Suppose u is
adjacent to k of the vertices {x., x,, - -, xn-,—2}. Since G# H,,, we see that
do(u)zr+2, and thus k = 1.

First, we show that we may restrict our attention to the cases k = 1 and k = 2.
Suppose u is adjacent to x; and x;, 1=i<j=n-r-2 If j=i+1, then
replacement in C of x.x;., by xux.., yields the theorem. So assume i+ 1< . If
X% is in E(G) (xi1X4 is in E(G)) replacement of x._.x; and x;_,x,
(respectively, x.x;. and x;x;.,) in C by x,_,x;-, and x;ux; (respectively, x.,x;., and
xiux,) yields the theorem. So if u is adjacent to xi,x,, -+, x;, (all on C),
1=i<i,<:---<i, =n—r—2, then we may assume without loss of generality
that {x,-y, X1, - = *, Xi-a} and {Xi+(, X1, * * *, X1} are two independent sets of
vertices in G with at most k —1 common vertices. This accounts for at least
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2k -1+ (k ; 1) edges in G. Since u is nonadjacent to n — r — 2 — k vertices of
{xh X2y m 0y x-n—r-2}7

= k-1
(1) (E(G)l;2(k—1)+< ; )+n~r—2—k.

But |E(G)|=n-r—2,s0that0= (;)— 1, or k =2. So we now treat the cases

k=1and k =2.

If k = 2, the right side of (1) is n — r — 2. This means that all edges of G have
been determined in the count leading to (1). We deduce that u is adjacent to
each of the vertices v, vy, - - -, v, and that x, is adjacent to x,.,. Replacement in C
of xox, and x,x,.; by x.1x, and x,ux, yields the theorem.

If k=1, then r+2=ds(u)=(n-1)-(n-r—-3)=r+2. Hence,
|E(G - u)|=|E(G)|-ds(u)=(n—r-2)—(n—1-ds(u))= 1. Moreover, u
is adjacent to every vertex of P. Denote i, by i. If i=1o0r i =n—r—2, then
replacement yields the theorem. So we assume 2=i=n-r—3. Since
|E(G —u)|=1, not both x,x.., and Xx_,x, ,, are in E(G) unless these two
edges are actually the same edge, i.e., unless i =2 and i + 1 =n —r —2. In this
case n = r + 5 and thus, G = H,, a contradiction. If x,x,.,isin E(G) (x,.1X ._,—2 IS
in E(G)), then replacement in C of xox, and x.x,., (respectively, x;_;x, and
X nor-2X n-r-1) DY XiXiy and xoux; (vespectively, xi_,x,_,_. and x,ux,,-,) yields a
circuit of length n containing P.

In any case, P is contained in a circuit of length n so that the proof of the
theorem is complete.

We point out that the case r = 1 of the previous theorem was proved using
different methods by B. Alspach and T. Brown [2] and recall that the case s = n
was partially treated by H. V. Kronk [7].

CoroLLARY 2.4. Let r and n be integers, 1 =r=n—2.

<n2_1)+r+1, if r+2=s=n-1

Then mi(n;r,s)=

<n;1>+r+2, if s=nzr+3.

3. The function m.(n;1,s)

DeriniTioN 3.1. Let n and s be integers, 2<s=n. Let n=(s—1)i+r,
1=r=s—1. We denote by F,, the multigraph obtained from a star with i +1
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edges by replacing i edges by a circuit of length s and one edge by a circuit of
length r (here a circuit of length 1 is understood to have one vertex and no
edges), cf. Figure 1.

x>g<1 >

’ 7.4
Fig. 1.
The multigraph F,, is a graph, unless s =2 or r =2. Note that F,; has
property p(1, =s). F,, has n vertices and the number of edges is

si , if r=1

f(n,s)={s'.+r’ if r#1.
We study the function f(n, s) in the next lemma.

LEMMA 3.2. Letk, s, and n be integers 2=k =s=n. Writen=(s—1)i+r,
1=r=s-1. Then

. _ _(f(n,s)—-k+1, if 2sk=r-1
i) f(n "“’s)‘{f(n,s)—k, D if r=k=s
ii) f(n,s)= f(n,s — 1) with equality if and only if

1<r and r+is=s-1.
Proor. Part (i) follows from the observation that for 2=s=m,

_ {2, if m=1 (mods~—1)
f(m+1,s)—f(m,S)—{1, if m#1 (mods—1).

The proof of part (ii) is straightforward and is omitted.

THEOREM 3.3. Let s and n be integers, 2= s = n, and let G be a connected
multigraph with n vertices. If G has property p(1, =s), then | E(G)| Z f(n, s).
Moreover, if |E(G)|=f(n,s) and n=1 (mods —1) as well, then G is a
connected graph each block of which is a circuit of length s.

Proor. The proof is by induction on n and s. Let G be a connected
multigraph with n vertices which has property p(l, =s). For 2= s = n, since G
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is connected | E(G)|z2(n—1)= f(n,2). If | E(G)|= f(n,2), then it is easily
seen that multigraph G is obtained from a tree by replacing each edge by a
circuit of length 2. Also, for 2=s=n, |E(G)|Zn = f(n,n), since G is
connected and must contain at least one circuit. If 2=s =n and | E(G)|=n,
then G is exactly a circuit. Let 3=s < n. Assume that for each n’'<n the
theorem holds for all s', 2= s’'< n’. Also assume that the theorem holds for all
s,2=s'<s<n.

If G contains no circuit of length s, then G has property p(1, = (s — 1)). By the
induction hypothesis and part (ii) of the lemma, | E(G)| = f(n,s — 1) = f(n, 5). If
| E(G)| = f(n,s), then f(n, s — 1) = f(n, s), and hence, by part (ii) of the lemma,
n#1 (mods —1).

So, we may assume that G contains a circuit C of length s < n. Contract all
edges of G which have both ends on C to a single vertex x, yielding a new
multigraph H with | V(H)|=n—s+1 and | E(H)|=|E(G)|—s. H has prop-
erty p(1, = s), so by our induction hypothesis, | E(H)| Z f(n — s + 1, s). By part
(i) of the Lemma

3) |E(G)|zZ|E(H)|+szf(n—s+1,5)+s=f(ns).

If | E(G)|= f(n,s)and n =1 (mod s — 1), then from (3) we see that | E(H)| =
f(n=s+1,s), | V(H)|=1 (mods — 1), and that C has no diagonals, i.e., the
only edges of G with both ends on C are exactly the edges of C. Clearly H is
connected. By our induction hypothesis, each block of H is a circuit of length s.
Consider a circuit C' of H containing x. In G the edges of C’ induce either a
circuit or a path connecting two distinct vertices of C. Let e be any edge of C’. G
contains a circuit C” including the edge e and of length at most s. Knowing the
structure of H, we easily deduce that C” contains all edges of C’. Hence, since C’
has length s, C"= C’, i.e., C' and C have precisely one vertex in common. From
this it follows that G is a connected graph each block of which is a circuit of
length s.

By induction the theorem follows.

CoroLLARY 3.4. Let s and n be integers, 2=s=n If n=(s—-1)i+r,
1=r=s-—1, then

sio, df r=1

mz(n;1,5)=f(",s)={s,'+,, if r#l.

Proor. The inequality mxn;1,s) = f(n,s) follows from the previous
theorem. To show the reverse inequality take F;_y..5, select two vertices which
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are connected by a path of length s —r, and add (if r > 1) a path of length r
between these vertices.

The proof of the Corollary shows that the extremal graphs may contain blocks
which are not circuits in the cases n# 1 mod (s — 1). Also, there exist extremal
graphs containing no two edge-disjoint circuits. For example, consider the graph
of Figure 2a.

Of course, there are edge-minimal connected graphs which have property
p(1, s) and which are not edge-minimum. Consider for example the graph of
Figure 2b.

(a) (b)
Fig. 2.

4. The function m(n;2,4)

Now we turn to the property p(2, = 4). It is easy to see that a connected graph
G with n vertices, n = 3, has property p(2,3) if and only if G = K,. However,
there seems to be no simple characterization of graphs with property p(2,4)
(respectively, p(2, =4)). It can be shown that the only cubic graphs with
p(2, =4) are K., K, the 3-cube and the triangular based prism (the cartesian
product of K and K;). Regular graphs with property p(2, =4) include K.+, Kan,
K..,-(edges in a perfect matching) (if n is even), and the cartesian product of K,
and K.

A lower bound on the number of edges in graphs with property p(2, =4) is
obtained in the next theorem.

TueoreM 4.1. If G is a connected graph with n vertices, n = 4, which has
property p(2, =4), then |E(G)|=2n -4.
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Proor. Let G be a connected graph with n vertices, n =4, which has
property p(2, =4). Let H be a subgraph of G such that

) |E(H)|z2| V(H)|-4,

ii) for each x € V(H), du(x}= 2, and

iii) | V(H)| is maximum.
Such an H exists since G contains a circuit of length 4. If | V(H)|= n, then
|E(G)|z|E(H)|Z2n — 4. Suppose | V(H)| < n. Let H' be the subgraph of G
spanned by the vertices in V(G)— V(H) which are adjacent to some vertex of
H. V(H)#J since G is connected and |V(H)|<n. If v € V(H') and
v € N(x)N N(y) with x# y in V(H), then H + v (the subgraph of G composed
of H and v and all edges of G with one end in V(H) and one end v) satisfies (i)
and (ii), a contradiction to (iii). So if v is in V{H') there is exactly one x in V(H)
with v adjacent to x. By (ii), let x, and x, be in Ny (x). Path x,xv is in a circuit C;
of length 4, so from our previous remark, there is a v, in V(H’) so that C, is
given by x,xvv,x,. Similarly, x,xv is in a circuit C, of length 4 given by x.xvv,x,
with v, € V(H'). Also v, # v,, since x; # x,. Thus, du(v)Z 2, for every v in
V(H"), and |E(H')|Z| V(H')|. Let H" be the subgraph of G spanned by
vertices in V(H)U V(H'). Then |E(H")|Z|E(H)|+|E(H"|+|V(H)|=z
2| V(H)|-4+2|V(H)|=2| V(H")|-4, ie., (i) is satisfied by H”". Since
du{x)=2 for every x in V(H"), we have contradicted the choice of H.
Consequently, | V(H)| = n and the theorem follows.

In order to show that the bound given in the previous theorem is best possible,
we merely need to consider K. .. So, we have determined m.(n;2,4).

CoROLLARY 4.2. my(n;2,4)=2n—-4 forn=4.

CoroLLARY 4.3. The only edge-minimum cubic graph with property
p(2, =4) is the 3-cube.

For each n = 6, we can find a non-complete bipartite edge-minimum graph
with n vertices with property p(2, = 4) (the case n = 8 is given in Corollary 4.3).
In fact, we now describe all the edge-minimum graphs with property p(2, =4).

DEeFiNITION 4.4. Let B be the collection of graphs defined as follows:

i) K,,isin B.

ii) If G isin B and x and y are two distinct nonadjacent vertices of G such
that N(x)= N(y), and z is a new vertex (i.e., not in V(G)), then the graph H
with V(H)= V(G)U{z} and E(H)= E(G)U{xz,yz} is also in B.

It is easy to prove by induction on the number of vertices that every graph in B
has property p(2,4).
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All edge-minimum connected graphs with property p(2, = 4) are given in the
next theorem.

THEOREM 4.5. Let G be a connected graph with n vertices, n = 4, which has
property p(2, =4). If | E(G)| = 2n — 4, then G has property p(2,4), and G is the
3-cube or G is in B.

We omit the proof of this theorem, as it is too long to be included here. It is
conducted by induction on n, and depends strongly on the ideas in the proof of
Theorem 4.1.

We mention another generalization of Theorem 4.1.

THEOREM 4.6. Let k be an integer, k = 4, k # 6. If G is a connected graph with
n vertices, n = k, which has property p(k =2, k), then | E(G)|z2n - k.

We also omit the proof of this theorem. Note that the theorem is best possible
for k =5 (as demonstrated by the graph obtained from K, ,._; by inserting a new
vertex of degree 2 on one of its edges). Thus, my(n;3,5) = 2n — 5. It can easily be
shown, using the method of Theorem 4.1, that every connected graph with n
vertices which has property p(4, = 6) has at least (3/2)n — 3 edges. In the next
section we show this is best possible, when n is even.

5. Bounds for m,(n;r,s)

Edge-minimum graphs with property p(2, s), s > 4, are apparently difficult to
determine, particularly when s is odd. In this section we present some
constructions which yield upper bounds on the number of edges in edge-
minimum graphs with property p(r, s), i.e., on mx(n;r, s). Values of ma(n;1,s),
my(n;2,4) and my(n, 3,5), are given in previous sections.

Consider the graphs indicated in Figure 3.

It follows from Figure 3 that

a) my(n;2,5)=(3/2)n when n and s are even integers = 6.

b) ma(n;rns)=(s/(s—2))(n-2)forn=((s-2)/s)i+2,i=22,2=r=(s/2)+
1, and s =6, s even,

c) m(25;2,5)=m4(2s;3,5)=3s for s odd, s=5.

d) mi(s’—s;2,5)=s*+s for s odd, s=7.

Note that (c) shows that the inequality of (a) also holds, when s is odd, and
n = 2s. Also note that the inequality of (b) reduces to that of (d), if we put r =2
and n=s’—s.

Combining the last paragraph of Section 4 with (b), we see that my(n;4,6) =
(3/2)n - 3, for n even.
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oliRe:

(c)

{d)

Fig. 3.

6. A generalization of property p(2,s)

DerINITION 6.1. A graph G has property q(2, s) (respectively, q(2, =s)) if
each pair of edges is contained in a circuit of length s (respectively, less than or
equal to s). Let u(n, 5) (respectively, u (n, = 5)) denote the smallest integer such
that there exists a connected graph with n vertices and u(n, s) (respectively,
w(n, =s)) edges which has property q(2, s) (respectively, q(2, =5)). u(n, s) is
denoted ug(n, s) in [9].

Clearly, p(n, =s)=p(n,s) and my(n;2,s) = u(n, s). It is easy to see that the
3-cube does not have property g(2,4) and that the graphs K, .-, are the only
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graphs in B (see Definition 4.4) which have property g (2, 4). So by Theorem 4.5,
we obtain the following result of U. S. R. Murty [9, theor. 1%]:

THEOREM 6.2. u(n,4)=2n-—4, and K,._, is the corresponding extremal
graph.

Murty also proved [9, theor. 2%] that u(n,6) =[(3n —5)/2]. The graphs in
Section 5 demonstrating the inequality ma(n;2,2s5)= (s/(s — 1))(n —2) when
n =2 mod(s—1) also show u(n, =2s)= pu(n,2s)=(s/(s — 1)) (n — 2) for these
values of n. We shall show that (n, =2s)={(s/(s — 1)) (n — 2)} for all n = 2s. For
this we need the following lemma.

Lemma 6.3. Let H be a graph with radius r(H)=r, and let P be a path of
length s such that P and H have exactly the endvertices, v and w say, of P in
common. Then

a) r(HUP)zi(s+du(v,w)—1), and

b) r(H U P)= min{r, s}.

Proor oF (a). Let H’ denote the graph H U P and let P’ be a shortest path
of H connecting v and w. P’ has length d = dy (v, w). Consider first any vertex u
on P but not in H. It is easy to see that the circuit P U P’ has radius [1(s + d)], so
there is a vertex u' in PUP’ such that dpop(u,u’)=3(s+d—-1). But
dpop(u, u') = dulu, u’), so ex(u)=i(s +d — 1) (en(u) denotes the eccentricity
of u in H’). Consider next a vertex u in H. Put @ = dy(u, v) and B = du(u, w)
and assume, without loss of generality, that a = B. Suppose first a + s = 8. In
this case let u’ be the vertex of P whose distance in P from w is =
[((a + s — B)]. This vertex exists since a =B implies ¢t =s. Then du(u,u’)=
min{e +s—t,B+t}. By choice of t, a+s—t=zB+t=[(a+B+5)]2
id+s-1). So ex(u)=3(d+s—1). Suppose next a+s<B. If a+sz
i(d+s-1), then ex(u)=du(uw)zi(d+s—1), so assume a+s<
3(d + s — 1). Let u’ denote the vertex on P’ whose distance in P’, i.e., in H, from
w is t=[i(d-s—-2a). Then du(u,u)Zdu(u',v)—du(u,v)=d-t-a=
H(d+s-1).

So en(u)Z dy(u,u’)=min{dy(u,u’),a +s+t}=i(d +s—1). In each case
en(u)z3(d+s-1),so r(H)zi(d+s-1), and (a) is proved.

ProoF oF (b). We shall prove that for every vertex u in H', ex(u)Zr or
ew(u) = s. Consider first a vertex u € V(H). There exists a u’ in V(H) such that
du(u, u') = en(u) = r. Either du(u, u’)= du(u, u’) Z r or else a shortest path in
H' from u to u’ includes P, in which case du{u, u’)=s. So ex{(u)= min{r, s}.
Consider next a vertex u on P but not in H. Vertex u partitions P intoa v — u



Vol. 24, 1976 EDGE SETS 317

path of length ¢, say, and a u — w path of length s — ¢. Let u’ be the vertex on P’
whose distance (in P’) from v is min{¢, d; (v, w)}. Let z € V(H) be a vertex such
that du(z,u')= ex(u’)Zr. Then du(z,v)Z= du(z,u’)— du(u',v)Zr—1t, and

r—(du(v,w)—1), if t<du(v,w)

dH(Z’w)g{ r . lf t;dH(U,W)-

Hence,
en(u) = du(u, 2) = min{t + du(z,v), s—t+du(z,w)}

>{min{r,r+s—dg(v,w)}, if t<du(v,w)
= min{r,s—t+r} , if t=du(v,w).

If diu(v, w) < 5, we have proved that e, (u) = r, so assume dy (v, w)= s + 1. Then
en(U)Z epup(u)=[i(s + du(v,w))]Z[3(2s + 1)] =s. In either case eun(u)=
min{r, s} and (b) is proved.

REMARK 6.4. The graph consisting of m paths, each of length k, and one
path of length r+ 1, 1 =r = k — 1, such that each pair of paths have exactly the
endvertices in common has 2+ (k —1)m + r vertices, km + r + 1 edges, and it
has property ¢ (2, =2k).

THEOREM 6.5. Let G be a connected graph with |V(G)|=n=
2+(k—U)m+r, where 1=r=k—1. If G has property q(2, =2k), then
|E(G)|Z km +r+1.

ProoF. A non-empty, connected subgraph H of G spanned by 2+
(k —1)m’'+r' vertices (1=r'=k —1) of G is called admissible if

i) |[E(H)|zkm'+r'+1, and

i) |[E(H)|>km'+r+1, if r(H)=r'.

It is easy to see that every subgraph spanned by the vertices of a circuit of length
not exceeding 2k is admissible. Let H be a maximal admissible subgraph. We
shall show that H = G. Suppose, therefore, that H# G.

We shall first consider the case where G contains a path P of length not
exceeding k such that P and H have precisely the endvertices, v and w say, of P
in common. Let s denote the length of P and let H' be the subgraph of
G spanned by V(H)UV(P). Then |V(H)|=|V(H)|+s-1=
2+(k—-Dm'+r+s-1, and |EH)|Z|EH)|+szkm'+r+s+1. If
r'+s—1=k —1, then H'is an admissible subgraph, contradicting the maximal-
ity property of H. So we may assume r’+ s> k. Then we write | V(H')|=
24 (k-1 (m'+D)+r'+s—k and |[E(H)|Zk(m'+1)+r'+s—k +1. If the
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last inequality is strict, then H’ is admissible, so assume it is not strict. Hence, the
inequality |E(H')|z|E(H)|+s is an equality, and this implies | E(H)|=
km'+r'+1. Since H is admissible, r(H)=r'+ 1. By Lemma 6.3(b), r(H')=
min{r'+1,s}. Since r' = k — 1 and s = k, it follows that r(H')Z min{r'+ 1,5} =
r'+s—k+1. Hence H' is admissible, a contradiction.

We next consider the case where no such path P exists. Let e be an edge of G
incident with vertices x in V(H) and y in V(G)— V(H). Let z be a vertex of
maximum distance (in H) from x. Let ¢’ denote any edge of H incident with z.
Let C be a shortest circuit in G containing ¢ and e’. Since G has property
q(2, =2k), C has length not exceeding 2k. There is a unique decomposition of C
into paths, P!, P?---, P% P%' ... P% such that each of P' (1=i=gq) has
exactly its endvertices in common with H, each of P/ (¢ + 1 = j = q') is contained
in H, and P' N P/ =& for q <i <j = q'. By assumption, each of the paths P’
(1=i = q) has length greater than k. But thisimplies that g =1andq'=2. Let v
denote the endvertex of P’ other than x, and let s denote the length of P’
(k + 1= s <2k). Let H’' denote the subgraph of G spanned by V(H)U V(P").
Then |V(H')|=2+(k —1) (m'+1)+r'+s—k, and |E(H')|Z|E(H)|+s=
k(m'+1)+r'+s—k+1. Suppose first that |E(H)|=km'+r'+1. Then
r(H)z r'+ 1, which implies that P? has length at least r' + 1, because it contains
an x — z path. Then s, the length of P!, is at most 2k — r'— 1, which implies
r'+s—k=k—1. To show that H' is admissible, and thus obtain a contradic-
tion, we need only show that r(H')= r'+ s — k + 1. The x — z path contained in
P? has length at least r'+ 1. Hence, the z — v path contained in P* has length at
most 2k—s—r'—1, which implies du(v,x)Zdu(x,z)—du(z,v)=
r+1)-QRk-s—-r-1)=2r'+s—-2k+2. By Lemma 6.J3(a), r(H)=
Js+@r+s-2k+2)—-1)=r'+s—k+1-3 So H'is admissible, a contradic-
tion. Suppose next that | E(H)|>km’'+r'+ 1. If r'+ s — k = k — 1, then we see
from the inequality | E(H")|Z | E(H)[+s > k(m'+1)+r'+s—k + 1 that H'is
admissible. So we may assume that r'+s—k = k. Then we write | V(H')| =
2+(kk—1) (m'+2)+r'+s-2k+1 and |E(H)|Z2k(m'+2)+r'+5s-2k +2.
Furthermore, by Lemma 6.3(a), r(H)Z¥(s+du(x,v)-1)Zis>
r'+s—2k+1,because r' = k — 1 and s < 2k. This shows that H' is admissible, a
contradiction which proves the theorem.
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